0.0.1 The Cantor Set

Construction of the Cantor Set

Let $C_0 = [0,1]$, $C_1 = [0,\frac{1}{3}] \cup [\frac{2}{3},1]$, $C_2 = [0,\frac{1}{9}] \cup [\frac{2}{9},\frac{1}{3}] \cup [\frac{2}{3},\frac{7}{9}] \cup [\frac{7}{9},1]$, and in general, let C_{n+1} be the union of the 2^{n+1} closed intervals, each of length $(\frac{1}{3})^{n+1}$, obtained by removing the open middle thirds of the 2^n closed intervals of C_n . We define the Cantor set C to be the intersection of all the C_n ; $C = \bigcap_{n=0}^{\infty} C_n$. Another way to describe this is to say that C is the set of points in [0,1] that remain after removing the open middle third interval $(\frac{1}{3},\frac{2}{3})$, and then removing the open middle thirds from the remaining two closed intervals $[0,\frac{1}{3}]$, $[\frac{2}{3},1]$, and then removing the open middle thirds from the remaining four closed intervals, etc ad infinitum. Note that the sets C_n are approximations of C in the sense that $\lim_{n\to\infty} C_n = C$ so we can get an impression of what C looks like by looking at C_n as n gets large (see Figure 2 and Exercise 1).

figure

This construction of \mathcal{C} removes infinitely many intervals from [0,1], so we might wonder if there are any points in \mathcal{C} . Some obvious points are the end points of the open middle third intervals that were removed; $\{0,1,\frac{1}{3},\frac{2}{3},\frac{1}{9},\frac{2}{9},\frac{7}{9},\frac{8}{9},\ldots\}$. So there are at least a countably infinite number of points in \mathcal{C} . In fact, we will see that there are many more points in \mathcal{C} than these. But let's first describe some of the properties of the Cantor set.

Since $[0,1] = \mathcal{C} \cup \{\text{intervals removed}\}\$ (a disjoint union, notice), the length of $\mathcal{C} = 1$ – (total length of the intervals removed). The length removed in the first stage is $\frac{1}{3}$, the length removed in the second stage is $2 \cdot (\frac{1}{3})^2$, the length removed in the third stage is $2^2 \cdot (\frac{1}{3})^3$, etc, so the total length of the intervals removed is $\sum_{n=1}^{\infty} 2^{n-1} (\frac{1}{3})^n = \frac{1}{2} \sum_{n=1}^{\infty} (\frac{2}{3})^n = \frac{1}{2} \left(\frac{2/3}{1/3}\right) = \frac{1}{2}(2) = 1$. Thus, the length of \mathcal{C} is 0. This implies that \mathcal{C} cannot contain any intervals, i.e., that is is 'dust' (between any two points in \mathcal{C} is a point that is not in \mathcal{C}).

We've noted that the end points of the intervals removed during the construction are in \mathcal{C} , but what other points are in \mathcal{C} , if any? It's very difficult to see what other points are in \mathcal{C} by relying on this geometric construction. For example, can you see why the numbers $\frac{1}{4}$ and $\frac{3}{4}$ are in \mathcal{C} ? They are not the end points of any interval that was removed, yet they are never removed in the construction of \mathcal{C} . To see exactly what numbers are in \mathcal{C} , it's much more convenient to represent numbers in a way that reflects the structure of \mathcal{C} . Going back to the construction, note that the points in \mathcal{C}_1 are precisely the numbers x in [0,1] that have no 1 in the first place of their ternary expansion $[x]_3$. (Here we need to resolve the ambiguity of which ternary expansion to choose for those numbers that have two expansions. First note that in base 3, $0.1 = 0.0\overline{22}$, and more generally, $0.00 \cdots 0.0\overline{22} = 0.00 \cdots 0.0\overline{100}$. In these cases we choose the expansion that contains only $2^{'s}$. For example we choose $[\frac{1}{3}]_3 = 0.0\overline{22}$ (rather than 0.1) and $[\frac{2}{3}]_3 = 0.2$ (rather than $0.1\overline{22}$). The numbers that have two such ternary expansions are numbers of the form $\frac{1}{3^n}$ and $\frac{2}{3^n}$.) Similarly, \mathcal{C}_2 are the numbers

in [0,1] that have no 1 in either the first or second places of their ternary expansion. So we see that \mathcal{C}_n is

¹See Appendix X for a discussion of ternary, and other base, expansions

precisely the numbers in [0,1] that have no 1 in any of the first n places of their ternary expansion. Since \mathcal{C} is the limit of the \mathcal{C}_n , the numbers in \mathcal{C} are the numbers in [0,1] that have no 1 in their ternary expansion; see Figure 3.

figure

exercise

For example, $[\frac{1}{4}]_3 = 0.02\overline{02}$ and $[\frac{3}{4}]_3 = 0.2\overline{02}$ so both $\frac{1}{4}$ and $\frac{3}{4}$ are in \mathcal{C} . Moreover, if $\vec{a} = b_1b_2b_3...$ is a sequence of $0'^s$ and $2'^s$, then the number x with $[x]_3 = 0.\vec{a}$ is a number in \mathcal{C} . Just how many of these numbers are there? To answer this we observe that we can match elements in the set \mathcal{B} of all sequences (binary expansions) of the form $0.\vec{b}$, where $\vec{b} = b_1b_2b_3...$ is a sequence of $0'^s$ and $1'^s$, with numbers in [0,1] via binary expansions (however, not in a one-to-one manner due to the non-uniqueness of some expansions mentioned in the previous paragraph²; see also Exercise 1.2.1). That is, if $\vec{b} = b_1b_2b_3...$ is any sequence of $0'^s$ and $1'^s$, then there is a unique number $x \in [0,1]$ such that $[x]_2 = 0.\vec{b}$, in fact $x = \frac{b_1}{2} + \frac{b_2}{2^2} + \frac{b_3}{2^3} + ...$ So the cardinality of [0,1] is at least as large as the cardinality of \mathcal{B} . The matching $x \in [0,1] \mapsto [x]_2 \in \mathcal{B}$ (choosing one of the two expansions if x has two binary expansions) shows that the cardinality of \mathcal{B} is at least as large as that of [0,1]. Hence the cardinality of [0,1] is the same as that of \mathcal{B} .

Now, the set S of all sequences of the form $0.\vec{a}$ where \vec{a} is a sequence of $0'^s$ or $2'^s$ has the same cardinality as the set S; just match each $0.\vec{b} \in \mathcal{B}$ with an element $0.\vec{a} \in S$ by changing every 1 in \vec{b} to a 2, and visa versa, match each element $0.\vec{a} \in S$ with an element $0.\vec{b} \in \mathcal{B}$ by changing every 2 in \vec{a} to a 1. Since \mathcal{B} has the same cardinality as [0,1], and since S has the same cardinality as C (same argument as for \mathcal{B} and [0,1]), the Cantor set C has the same cardinality as the interval [0,1]! This seems bizarre because in some sense C is a 'small' subset of [0,1] (it is a proper subset of length 0). This shows you that by 'rearranging' the points in [0,1] we can obtain a set of length zero (there are also 'generalized Cantor sets' which have lengths anywhere between 0 and 1, so more generally we can rearrange the points in [0,1] to obtain a set of any length between 0 and 1, including 0 and 1; cf. Excercise xx)³.

How are the numbers in [0,1] rearranged to obtain C? The discussion in the previous paragraph explained how we could determine the cardinality of C by matching each number x in the interval [0,1] with a number y in C in a one-to-one manner;

$$[0,1] \ni x \mapsto \overbrace{0.\vec{b} = [x]_2 \mapsto 0.\vec{d}}^{\text{change 1's to 2's}} \in \mathcal{S} \mapsto y = \frac{a_1}{3} + \frac{a_2}{3^2} + \dots \in \mathcal{C}$$

$$(1)$$

(we make the convention that if x has two binary expansions we take the one that ends in zeros). If you look more closely at this matching, you'll see that some numbers in \mathcal{C} are actually missed (so this mapping is not one-to-one). For example, $\frac{1}{3} \in \mathcal{C}$ is not matched with any number in [0,1]; $\left[\frac{1}{3}\right]_3 = 0.0\overline{22}$, but $\frac{1}{2}$ (where we choose $\left[\frac{1}{2}\right]_2 = 0.1$) is mapped to $\frac{2}{3} \in \mathcal{C}$; see exercise xxx. So this matching is actually onto a proper subset of \mathcal{C} (which is sufficient to prove that the cardinality of \mathcal{C} is at least as large as the cardinality of

The non-one-to-oneness of the matching $\mathcal{B} \to [0,1]$ occurs 'only' for a countable number of points in [0,1]. Since [0,1] is uncountable, this does no affect the conclusion of our argument here. See Appendix X.

³ A simpler way to rearrange the points in [0,1] to obtain a set of small length is given below.

[0,1]). However, 'most' of the numbers of \mathcal{C} are matched with a number in [0,1] (exercise xx) so this way of exercise matching the two sets gives us a good impression of how to rearrange [0,1] to produce \mathcal{C} .

Generally, we can represent any rearrangement of [0,1] by drawing the graph of the function $\varphi(x)$ that represents the rearrangement (i.e., $\varphi(x) = y$ means the rearrangement moves x to y). Now, it's no mystery how one can rearrange [0,1] to obtain a set of small length. Let ε be any small positive number. Then the function $\varphi_{\varepsilon}(x) = \varepsilon x$ rearranges [0,1] into a set of length ε , namely the set $[0,\varepsilon]$. Notice that the slope of the graph of $\varphi_{\varepsilon}(x)$ is small; the slope of the graph of any function that rearranges [0,1] into a set of small length must necessarily be small. Since the length of \mathcal{C} is zero, the graph of the function $\varphi(x)$ that represents the rearrangement of [0,1] into \mathcal{C} must in some sense have zero slope. But the graph of this function cannot be flat on any interval because we know that if $x_1 \neq x_2$, then $\varphi(x_1) \neq \varphi(x_2)$. So it's not obvious what the graph of this function looks like; it begins at (0,0), ends at (1,1), its range is \mathcal{C} (so if you projected the graph onto the y-axis it would be \mathcal{C}), and is 'flat'!

To get an idea of what that graph looks like, let's define a function $\varphi_{\mathcal{C}}(x)$ which matches the numbers in [0,1] to numbers in \mathcal{C} as described above in equation (2.1). Since 'most' numbers in \mathcal{C} are matched in this way with a number in [0,1], the graph of $\varphi_{\mathcal{C}}(x)$ will give an accurate impression of the way [0,1] is rearranged to make \mathcal{C} .

Figure 4 shows the graph of $\varphi_{\mathcal{C}}(x)$. It was obtained by taking $x \in [0, 1]$, computing $[x]_2$, changing every figure 1 in $[x]_2$ to a 2, then summing up the resulting ternary expansion to obtain $y = \varphi_{\mathcal{C}}(x)$. If you look closely you'll see that the graph appears to be flat everywhere, but also has lots of jumps. The jumps are precisely at the points x where $x = (\frac{m}{2^n})$ for some positive integer n, and positive integer $m < 2^n$ (these are the numbers which have a binary expansion that ends in zeros). Note that these points are dense in [0,1], so the graph of $\varphi_{\mathcal{C}}(x)$ has a jump almost everywhere, and is 'flat' everywhere else.

Let $\mathcal{E} = \{0, 1, \frac{1}{3}, \frac{2}{3}, \frac{1}{9}, \frac{2}{9}, \frac{7}{9}, \frac{8}{9}, \dots\}$ be the set of edges of the intervals removed in the construction of the Cantor set \mathcal{E} .

<u>Claim</u>: \mathcal{E} is a 'small' subset of \mathcal{C} , i.e., 'most' of the numbers in \mathcal{C} are not edge points.

<u>Proof</u>: If $x \in \mathcal{E}$, then $[x]_3$ ends in $\overline{00}$ because $x = \frac{m}{3^n}$ for some positive integer $m < 3^n$ (exercise xx). If \mathcal{S}_o is exercise the subset of \mathcal{S} of sequences that end in $\overline{00}$, then \mathcal{S}_0 is a 'small' subset of \mathcal{S} in the sense that the cardinality of $\mathcal{S} \setminus \mathcal{S}_0$ is the same as the cardinality of \mathcal{S} (exercise xx) \square

So we could have removed the *closed* middle thirds in the construction of \mathcal{C} and still have obtained essentially \mathcal{C} . However, the set \mathcal{E} shows us where the points of \mathcal{C} are.

Claim: The set \mathcal{E} is dense in \mathcal{C} ; $\overline{\mathcal{E}} = \mathcal{C}$.

<u>Proof:</u> Exercise xx.

In other words, the edge points \mathcal{E} accumulate to \mathcal{C} ; if $x \in \mathcal{C}$ is any point in the Cantor set, then there

is an infinite sequence of points from \mathcal{E} that converge to x. So although \mathcal{E} is a negligibly small subset of \mathcal{C} , the edge points do show us exactly where the points in \mathcal{C} are, and so sketching the edge points gives us an accurate impression of what \mathcal{C} looks like (however, sketching \mathcal{E} is no easy task!).

exercise

Summary of properties of the Cantor set:

- the length of C is zero
- C is totally disconnected (is 'dust')
- C is a closed set (Exercise xx)
- \mathcal{C} has the same cardinality as [0,1]
- ullet every point in ${\mathcal C}$ is a limit of a sequence of end points ${\mathcal E}$
- C is self-similar

Some Useful Formulae

Geometric series

For any number $r \neq 1$,

$$1 + r + r^{2} + r^{3} + \dots + r^{n} = \sum_{i=0}^{n} r^{i} = \frac{1 - r^{n+1}}{1 - r}, \text{ and}$$
$$r + r^{2} + r^{3} + \dots + r^{n} = \sum_{i=1}^{n} r^{i} = \frac{r - r^{n+1}}{1 - r}$$

Thus, if |r| < 1 then taking the limit $n \to \infty$,

$$1 + r + r^2 + r^3 + \dots = \sum_{i=0}^{\infty} r^i = \frac{1}{1-r},$$
 and
$$r + r^2 + r^3 + \dots = \sum_{i=1}^{\infty} r^i = \frac{r}{1-r}$$

Decimal, binary, and ternary expansions

Let x be a number in [0,1], a a positive integer, and $[x]_a$ denote the expansion of x in base a. The relations between $[x]_a$ and x are as follows.

• Decimal expansion (a = 10):

if
$$[x]_{10} = 0.d_1d_2d_3...$$
, where $d_i = 0, 1, 2, ..., 9$,
then $x = \frac{d_1}{10} + \frac{d_2}{10^2} + \frac{d_3}{10^3} + \cdots$

• Binary expansion (a = 2):

if
$$[x]_2 = 0.b_1b_2b_3...$$
, where $b_i = 0$ or 1,
then $x = \frac{b_1}{2} + \frac{b_2}{2^2} + \frac{b_3}{2^3} + \cdots$

• Ternary expansion (a = 3):

if
$$[x]_3 = 0.c_1c_2c_3...$$
, where $c_i = 0, 1$ or 2,
then $x = \frac{c_1}{3} + \frac{c_2}{3^2} + \frac{c_3}{3^3} + \cdots$

For numbers x greater than 1 there would be digits to the left of the point corresponding to positive powers of a.

Note that in any base some numbers will have two expansions. For example $\left[\frac{1}{10}\right]_{10} = 0.1$ and $0.0\overline{99}$, $\left[\frac{3}{4}\right]_2 = 0.11$ and $0.10\overline{11}$, $\left[\frac{7}{9}\right]_3 = 0.021$ and $0.020\overline{22}$. This can be seen by using the formulae above for adding geometric series.

Here's an algorithm for computing the ternary expansion of a number $x \in [0, 1]$ (there's a similar algorithm if the number is greater than 1 and for other bases). We want to determine the c_i , $c_i \in \{0, 1, 2\}$, such that $x = c_1/3 + c_2/3^2 + c_3/3^3 + \cdots$

• Determine c_1 ;

- if $0 \le x < 1/3$, then $c_1 = 0$
- if $1/3 \le x < 2/3$, then $c_1 = 1$
- if $2/3 \le x < 1$, then $c_1 = 2$
- let $x_1 = x c_1/3$ (note that $x_1 < 1/3$)

• Determine c_2 ;

• if
$$0 < x_1 < 1/3^2$$
, then $c_2 = 0$

• if
$$1/3^2 < x_1 < 2/3^2$$
, then $c_2 = 1$

• if
$$2/3^2 \le x_1 < 1/3$$
, then $c_2 = 2$

• let
$$x_2 = x_1 - c_2/3^2$$
 (note that $x_2 < 1/3^2$)

• Determine c_3 ;

• if
$$0 < x_2 < 1/3^3$$
, then $c_3 = 0$

• if
$$1/3^3 \le x_2 < 2/3^3$$
, then $c_3 = 1$

• if
$$2/3^3 \le x_2 < 1/3^2$$
, then $c_3 = 2$

• let
$$x_3 = x_2 - c_3/3^3$$
 (note that $x_3 < 1/3^3$)

• etc.

Here's a pseudocode that can be implemented on a computer to calculate the expansion of a number $x \in [0,1]$ in base b, $[x]_b = a_1 a_2 a_3 \dots$

```
a_1 = \text{floor}(bx); (since bx = a_1 + a_2/b + a_3/b^2 + \cdots and a_2/b + a_3/b^2 + \cdots < 1)
a_2 = \text{floor}(b^2x - ba_1); (since b^2x = ba_1 + a_2 + a_3/b + a_4/b^2 + \cdots and a_3/b + a_4/b^2 + \cdots < 1)
a_3 = \text{floor}(b^3x - b^2a_1 - ba_2);
a_4 = \text{floor}(b^4x - b^3a_1 - b^2a_2 - ba_3);
...
```

Here, floor(x) (the floor function, sometimes denoted by $\lfloor x \rfloor$) is the largest integer less than or equal to x (eg., floor(2.412)=2, floor(3)=3, floor(-1.23)=-2).

This gives us a quick way to compute base b expansions of numbers. First multiply the number by b. Then a_1 is the integer part of this number. Now multiply the fractional part by b and take the integer part of this number; this is a_2 . Now carry one like this. For example, let's compute the base 3 expansion of 1/7. First, 3(1/7) = 3/7 so $a_1 = 0$. Then, 3(3/7) = 9/7 = 1 + 2/7 so $a_2 = 1$. Then, 3(2/7) = 6/7 so $a_3 = 0$. Then, 3(6/7) = 18/7 = 2 + 2/7 so $a_4 = 2$. Now the pattern starts repeating (for this particular number), so $a_5 = 0, a_6 = 2, a_7 = 0, \ldots$ Thus, $[1/7]_3 = 0.01\overline{02}$.

Some facts:

Every rational number has an eventually repeating expansion in any base, and every irrational number has a non-repeating expansion in any base.

Suppose x and y are two number between 0 and 1. Let b be a positive integer and suppose the base b expansions of x and y agree to the k^{th} place, i.e.,

$$x = 0.a_1 a_2 \cdots a_k a_{k+1} a_{k+2} \cdots$$
$$y = 0.a_1 a_2 \cdots a_k e_{k+1} e_{k+2} \cdots$$

where $e_{k+1} \neq a_{k+1}$. Then

$$x = \frac{a_1}{b} + \frac{a_2}{b^2} + \dots + \frac{a_k}{b^k} + r_x$$
$$y = \frac{a_1}{b} + \frac{a_2}{b^2} + \dots + \frac{a_k}{b^k} + r_y$$

So $x-y=r_x-r_y$. Now note that both r_x and r_y are in $[0,1/b^k]$ (since $(b-1)/b^{k+1}+(b-1)/b^{k+2}+(b-1)/b^{k+3}+\cdots=1/b^k$; use the formula for a geometric sum), so the largest $|r_x-r_y|=|x-y|$ can be is $1/b^k$. That is, if two numbers in [0,1] have base b expansions that agree to the k^{th} place, then these two numbers are no further apart than $1/b^k$. Conversely, if $0.a_1a_2a_3\cdots$ and $0.e_1e_2e_3\cdots$ are two expansions in base b that agree to the k^{th} place, then the two numbers with these representations are no further apart than $1/b^k$. This is used several times in our discussions.

Construction of the Contra Set

0 1/27 1/2	¥ 44	2/9	7 ₃	¥3 1	₹/9	8/9
	-				_	
			_			
	_			_		_
	-					

